
So, the similar information I am representing in another number system which is your 

hexadecimal. Now, you just see what I am saying this is your 8 bit number all 0s to all 1s. So, 

all 1 in decimal it becomes 255 in hexadecimal it is your FF, FF means 15 F represents 15, 15 

× 161 + 15 × 160. So, in that particular case we will get that this is nothing but 255 in decimal. 

Now, when we are going to discuss that representation of number in computer or in your binary 

system or binary digit most of the time we are going to take help of hexadecimal number system 

because it is having one advantage. Say, when I am going to work with 32 bit number I have 

to write 32 bits ok all 32 bits 0 or maybe combination of 0s and 1 which is slightly difficult. 

Similarly when we are going to work with 8 bits we are going to write 8 bits all 0s to all 1. 

Now, again if I see how to do it in your decimal number then we have to have slight your these 

things calculation now this is the calculation we have to do which is slightly time consuming 

for any number. 

So, in that case for hexadecimal representation this very simple, you just see if I am having a 

4 bit number then all 0 if I am having then this is your 0 and if it is all 1 you can say that 8 + 4 

= 12, 12 + 2 =14, 14 + 1= 15. So, this is your 15 so we need total 16 different symbol 0 to 9 

and A to F, F is 16 and A is 10. So, now, to represent this number the maximum number of bits 

that we need is your 4 bit. So, when we are having a binary representation we simply group 

them in the 4 bits. So, in that particular case what will happen? We are going to say that this 

all 1 is going to represent F and all 1 is going to represent F. So, the range is from 00 to FF, 

when we are having 12 bit numbers then it will go from 000 to FFF. So, number of bit divided 

by 4 is going to give me the number of symbols needed for hexadecimal representation. 

So, if I go back to one of my earlier slide. So, in 41 I am saying that this is the binary 

representation now what is the hexadecimal representation 0010 this is your representing 2, 

1001 this is basically 8 + 1= 9, so 29. So, 41 in decimal number is equal to 29 in hexadecimal 

number system or in binary number system we can say 00101001. So, if you are going to work 

with 8 bit numbers we have to write 8 symbols in binary presentation, but in hexadecimal we 

are going to use only two symbol two digits. So, in most of the time we are going to represent 

our information in hexadecimal for understandability and for readability, but when you think 

about how it is working in the computer basically it working with this particular binary digit 

only in bit pattern 0s and 1s, but for readability we can write something in our hexadecimal 

notation. 

97



(Refer Slide Time: 19:59) 

 

Now, how to represent integers? So, in that particular case we are talking about the number 

system. Now, say if I am having 8 bit numbers. So, I am having a combination of 0s and 1s 

and 8 bits 8 symbols. So, in that particular case we are having 256 different symbols or 

combinations, so this combination will go from 0 to 255. 

Ok, so if we are going to represent only positive numbers then what will happen I can use all 

those 256 character to represent positive numbers from 0 to 255, but if you are going to consider 

about negative number also this is the number line this is 0 and this is your positive side and 

this is your negative side. So, when we are going to work with a negative number then what 

will happen whatever 256 different bit patterns we are having some of the bit patterns need to 

be reserved for negative numbers also; that means, in positive number when we are on the 

dealing with positive number then we are going from 0 to say 255. But when you are coming 

for negative numbers then some of those symbols have to be used for negative numbers also; 

that means, gradually my range is going to reduce in the positive side maybe it will be half over 

here. So, I can say this is your 127 and this side I may have 127. So, this is basically 127 + 127 

254 with 0 255. So, we are having total 256 symbols, but here we are using 255 one more 

symbols are still remaining. We will see how we are going to deal with that particular 

representation. 

So, basically we have with 8 bit numbers we can handle 256 different numbers. So, if it is your 

only positive numbers we are going to deal from 0 to 255, but if we are going to handle negative 

98



numbers then range will reduce it will go from some negative 127 to positive 127 or may be + 

- so on. 

(Refer Slide Time: 22:12) 

 

Now, for that we are having 2 ways of representing this number one is your sign magnitude in 

that particular case what will happen whatever bit pattern we have it will be divided into two 

part one part is known as your sign and other part is your magnitude. So, in that particular case 

what will happen? Say, for 8 bit numbers one bit will go for your sign and 7 bit will go for 

magnitude. So, if it is an 8 bit numbers. If it is a 16 bit numbers then 1 bit will go for sign and 

15 bit is going to represent the magnitude of that particular number. So, here what happened 

what convention we are using 0 means the positive numbers and 1 means the negative number. 

So, in that particular case for example, you just see + 18. So, this is the magnitude 10010 this 

is 24 + 21 16 + 1 18. So, similarly this is the magnitude of the number again it is 18, but now 

we are saying that 0 is my indicating the sign with it is a positive number. So, it is + 18 and 

this bit more significant bit is 1, 1 represent the negative numbers. So, this bit we are having 

going to give me - 1. So, in that particular case now we can represent the numbers positive 

number as well as negative numbers. 

Now, in that particular case now what will happen, if you take this particular 7 bit then it can 

the value that numerical that it can have go up to 127. So, with 0 I can go up to +127 and with 

most significant bit 1 we can go up to 127. So, this is 127 + 127. So, total 254 now we are 

having total 256 bit pattern what is the remaining bit pattern you just see that if you look into 

99



it what we are getting we are having that bit pattern 1 2 3 4 5 6 7 all 0 this is representing 0 or 

maybe one. So, this is also if you look into this magnitude, magnitude is always 0, but with this 

bit 0 and 1 we are getting positive 0 and negative 0; that means, there are 2 representation of 

0. So, in this particular case we are representing 256 different numbers, but out of that valid 

numbers is 255 we are having 2 representation of 0. So, there we may look to eliminate this 

also because why we should use two bit pattern to represent the same number, so for that we 

may go for some other representation which is known as your two’s complement. 

(Refer Slide Time: 25:03) 

 

So, in this two’s complement just I am giving one example just only getting phone numbers 

now in that particular case what will happen this is the representation if I am having 0 then 

these are all 0s, + one is simple that magnitude 1, 10, 11 like that if I go for positive 4 then it 

will be 100 like that and negative number is coming as - 1 is representing as your all 1s then - 

2 is coming as your all 1 and 0 and - 3 is coming as your all 1 after that six 1’s 01. 

So, basically what happens? It is basically the maximum number is a 255 or 8 bit representation 

that 255 is going to represent my -1 now you just count down and go downwards then 554 is 

going to give me -2, 253 will give me your -3, then 252 will give me -4 like that and from 0 if 

you go in upward direction say 1 is going to represent 1, 2 is going to represent 2, 3 is going to 

represent 3 like that. So, this is the simple way we can visualize it. So, if we are having a 

number in two’s complement form we are going to represent in this particular way. 

100



(Refer Slide Time: 26:31) 

 

Now, how to do it? We are having one is called one’s complement and two’s complement. So, 

if I consider a particular number say 00000011 this is a number that I am considering then what 

is the one’s complement, one’s complement basically it says that you complement all the bits 

of this particular number. So, I am going to get 11111100. So, this is the one’s complement of 

this particular number. And what is two’s complement it says that in case of two’s complement 

whatever we are getting in one’s complement add 1 to it. So, what I am going to get 11111101. 

So, this is the two’s complement. 

Now, if this is my some number given number I can get the one’s complement just 

complementing all the bits and I think in digital system we can do it by using a NAND gate or 

maybe using a NOT gate that we have discussed these things our digital block. So, after that 

we are going to add on to it finally, we are going to get it. Now if I go back to my previous 

slide you just see that we are talking about we are taking this particular number one. So, if I 

am going to take the ones complement I am going to get 11111100 now if I add 1 to it then I 

am going to get 11111101. Now, you just see whatever I am getting or taking the number after 

looking into the two’s complement I am getting this representation. 

So, generally we are saying that this is my positive 3 and other one is my negative 3. So, after 

taking the ones two’s complement we are going to get the negative representation of the given 

number. So, this is the task that we are going to see and why we are coming with this particular 

number system and why we call it complements you just see that I am taking this particular 

101



number 00000011. Ok, now I am taking the two’s complement what I am getting 11111101. 

Now, in that particular cases I am going to add this two numbers then what I am going to get 1 

and 1, 0 we having a carry 1, 1 and 1 0. So, I am getting a carry one. So, and finally, 1 carry 

out. So, we are getting this number. 

Now, what will happen we are working with 8 bit numbers; that means, we are having provision 

to store this particular 8 bits only and this is a carry out which is not a part of my number 

because I can represent the number with the help of 8 bit only. So, carry cannot be incorporated. 

So, we are not going to consider this particular 1. So, finally, what I am getting the after adding 

this number we are getting 0. So, when we add two numbers and if the result is 0 then what we 

say that one is the negation of the other because if I add two numbers a + (- a) then we are 

going to get result is 0. So, this is the principle that we are using. So, in two’s complement form 

we can use we get the negative of a given number or if we are giving a negative number then 

we are going to get the positive of that particular number. 

So, we are going to use this number. This is related to any number system see what we can do 

if I look into these things that binary decimal number system also in that particular case also 

we can have this particular concept of complement. So, in that particular complement here we 

are saying that just take the complement that means 0 will be replaced by 1, 1 will be replaced 

by 0. This is basically the subtract the number from the maximum digit that you have in that 

number system. So, this is basically 1 - 0 is going to give 0. So, now, if I take any decimal 

number system say 27 then what we are going to do, we are going to subtract this number from 

the maximum digit which is 9. So, 9 - 7 is going to give me 2, yes I am going to say that this is 

37. So, this is your 9 - 3 is 6, ok 62 now if I am going to add 1 to it then I am going to get 63. 

Now, we add up 37 and 63 what we are going to get 0 9 10. Now, we are working with two 

digit only the way here we are working with 8 bits we are using two bits two digit only. So, 

this digit cannot be stored. So, eventually what will happen adding this two number is going to 

give me the result 0 so that means, we can say that one is the negation of the other if we are 

using the number system your 10’s complement. So, for decimal number system also we can 

use that complement 10’s complement in case of 10’s complement first we are going to get the 

9’s complement the way we are getting the one’s complement this is the 9’s complement and 

after adding 1 we are going to get the 10’s complement. So, this is the principle we are using 

to represent the negative numbers. So, already I have explained these things what is the 

102



benefits. So, in this particular case first take the complement of given number then add 1 to the 

LSB then we are going to get the negation of that given number. 

(Refer Slide Time: 32:13) 

 

Now, what already we have seen? 

(Refer Slide Time: 32:27) 

 

This is a special case already we have seen that now in that particular case negative 0 is equal 

to a positive 0; that means, you having only one representation of 0. So, in sign magnitude form 

what will happen we are having -127 to +127 total 256 number along with that two 

representation of 0 2. So, total 256 symbols. 

103



Now here in this particular case after adding it since we are going to discard this particular 

carry out bit because we cannot store it because we are working with 8 bit numbers. So, finally, 

positive 0 and negative 0 is becoming same. So, we are having only one representation of 0.  

(Refer Slide Time: 33:14) 

 

Other one you just see what will happen now in that particular case if I am going to look for 

this particular combination because it is coming don’t know what I am saying that you start 

with all 1 then 11111110 like that you decrease it and finally, we are going to get this particular 

number. So, for this particular number if I take the one’s complement then I am going to get 

this representation and 2’s complementation I am going to get this particular number. So, 

basically two’s complement should give me the negation of that particular number. So, if this 

is a particular representation then we should be the negation of this thing, but both are standing 

up to be same. So, this is a special case and we are going to handle it as like that this 

representation will be treated as your -127 oh sorry -128. 

Now, why we are taking -128 why we are not taking these things your +128 because this is an 

extra symbol know we are getting -127 to 0 and to +127, now these are the 255 different bit 

pattern we are using now this is the bit pattern it is remaining there. So, we can use this 

particular bit pattern to represent another number and we are saying that we are representing it 

as a -128, but why not +128. So, in that particular case you will find that just concentrate on 

this particular most significant bit it is 1. So, in the representation when we are going to 

represent the number with 2’s complement we will find the positive number should start with 

104



0; that means, most significant are bits are 0 and negative numbers will start with 1; that means, 

most significant bit is a 1.  

Since this bit pattern is staring with 1 so, if we are going to treat this as a negative number then 

we say that it is going to represent -128 not +128; that means, now my range is go from -128 

to +127 total 256 different representation. So, if we come back to this particular slide you see 

that for negative numbers this most significant bit is always 1 and for positive number this most 

significant bit is 0. So, that’s why when we are coming for this particular special case 1 all 0s 

that will represent a negative number and the negative number is your -128. Now, what is the 

range of number? 

(Refer Slide Time: 35:54) 

 

Already I have mentioned it. So, in that particular case, for integer sorry for positive number 

we can go from 0 to 256, 255 if it is an 8 bit number. So, for negative numbers if we are going 

to handle a complete range of integers positive and negative then for 8 bit numbers the range 

will go from -128 to +127. 

And for 16 bit number it will go from 32768 to 32767. So, -32768 to +32767 and basically it 

is in 215 - 1 this is 27 - 1 because we are using 7 bit to represent my magnitude and this bit 

again a going to give me the indication about negative and positive number. So, it is basically 

2𝑛 - 1 to - 215. So, if we are going to work with n bit number then my range will be your  

105



–(2𝑛 – 1) to 2𝑛−1 - 1. So, this is the range that we are going to have when we are going to use 

two’s complement form. 

So, this is just in a tabular form we are writing this two’s complement number in 4 bit numbers. 

(Refer Slide Time: 37:16) 

 

So, this is your 0 then 7 this are the positive number and -1 will represent at the all 1 and this 

decremented and finally, -8 will be your 100. 

(Refer Slide Time: 37:33) 

 

106



Now, just look for some operations say I am giving that 7 + 7 now how we are going to edit 7 

it is a 4 bit numbers just remember that we are having a 4 bit numbers. So, 7 is a nothing, but 

0111, 0111. So, this is 7 and 7 now if I add them then what I am going to get 0111 ok this is 

the things that I am getting. Now you just see that -7 + -7 now what is the representation of - 7 

its two’s complementation 1001, 1001. So, this is your 1001 and 1001. So, if I add them what 

I am going to get 01001. So, this is your carry out we cannot consider it because we are working 

with 4 bit number. 

Now, considered that 7 + -1, 7 is your 0111 and what is -1, -1 is this all 1 1111, now this is 

your 01101 again I cannot consider these things and 1 + -7 so, 1 is your 0001 and what is my -

7, 1001 1001. So, this is your 0101. Now, you just see what we are getting actually. So, in this 

particular case this is your +7 this is your +7 now we are working with two’s complement. So, 

1110 what does it means 1110 is your -2 here this is your -7, -7. now 0010 what I am getting 2 

these are decimal equivalent this is your 7 and this is your -1. 

So, what I am getting 0110 which is your 6 this is your 1 and this is - 7. So, what I am getting 

1010. So, what is that 1010 is your - 6. So, I am getting - 6. So, just I am calculating it just 

show it now what will happens say when I use - 7 to - 1 should get - 6 and I am getting it. So, 

this is a correct result when I am using this things - 7 and - 1 I am getting + 6. So, this is also 

correct result, but when I am using - 7 + - 7 what should be my result my result should be 14, 

but as a result I am getting 2 only. Again when I am using + 7 and + 7 I should get + 14, but 

what I am getting over here I am getting - 2. 

Ok so, in this particular case, whatever result we are getting these are not correct because we 

have working with 4 bit numbers and you can handle 4 bits only. So, in that particular case 

these are not the correct result because we know that for 4 bit numbers my range is from - 8 to 

+ 7. So, this is the range, but these are the valid numbers but after adding I am getting a bigger 

number if it is a positive result say which is your 14 no doubt about it, 8 + 4 + 2, but since we 

are going to handle negative number. So, eventually it is represented as - 2. So, these are the 

two result at I am getting which is not correct and this situation is basically known as our 

overflow because we cannot handle + 14 over here this is the range. So, this is your overflowing 

the number. So, this is the overflow situation, but in these two cases I do not have any problem 

and what I am getting that correct result these are the two correct result. 

107



So, this is basically we should talk about the overflow situation; that means, we are trying to 

perform some operation computer is doing it or digital system is doing it and essentially it is 

giving me some result, but this result is wrong I cannot consider it. So, we are going to say 

these are the overflow situation. Secondly, if I look for this particular four calculation one thing 

you just see that here it is having a carry out this one is also having a carry out it is generating 

some carry, but other 2 combinations are not generating any carry bit this carry out is 0. So, in 

that particular case what we will say that these two operation is generating some carry for me, 

but one is your correct result second one is not correct result. So, we are having some situation 

called whether after performing some operation whether it generates carry or not or secondly, 

whether it is a valid result or not, if the valid result is not valid then we say it is an overflow 

situation. So, these are the terms we are going to use while going to design our computer. 

Now, another important issue you just see that I am giving, one more question that you perform 

7 - 5. So, in that particular case how we are going to perform this operation 7 - 5 I know that 

this can be done with your 7 + - 5. What is 7? A binary representation 0001. And what is the 

representation of - 5? 1011, 1011. If you add these two things then what you are going to get 

01001. Ok 7 - 5 is 2. So, I am getting 5 only. So, this is your 7 and this is your - 5 because we 

know that result is 2 I am getting it. 

Now, what is the observation over here? You just see when we are representing in two’s 

complement form to do the subtraction we can use the adder circuit itself just take the negative 

representation of the number and after that add them together and this is the way we used to 

do. So, in two’s complement form if we are using two’s complement representation basically 

adder circuit can be used to evaluate the subtraction also. So, in this particular case 7 - 5 we 

are getting result is 2 and you just see that it is also generating 1 carry. So, carry generated, 

since it is a valid result so it is not an overflow. So, this is also valid result. 

Now, when we are going to say that it is an overflow just you observe this particular result and 

from that we can conclude it actually you just see that this is having carry 0 and this is your 

carry out is 0. So, in that particular what I can say that carry into the most significant bit and 

the final carry out. So, this is the carrying to the most significant bit and this is the carry out 

this is the carry in to the most significant bit and this is the carry out. So, these are overflow 

situation this is the carry in to the most significant bit and this is the carry out of the operation. 

Here also this is the carry in to the most significant bit and this is the final carry out now you 

just see in these two situation these are my correct result. Here also I am having this ok now 

108



the observation is like that if the carry in to the most significant bit and the final carry out if 

they are same then we don’t have any overflow say these are the same situation. 

Ok these are the same situation. So, we don’t have overflow, but in case of overflow these 2 

bits are different say it is 0 and final carry out is 1 it is your carry in is your 1 and final carry 

out is 0. So, if these two situations are different then we are going to get an overflow and this 

is nothing, but my exclusive or scenario; that means, with the help of an exclusive OR gate I 

can check whether overflow occurs or not. So, what I can say this is the carry out and this is 

the carry out final and this is the carry in to MSB most significant bit which is a sign bit. So, 

with the help of this exclusive OR gate we can detect whether overflow occurs or not. 

So, these are the situations. So, what I am saying that here I am talking about overflow. So, this 

is the way I can detect the overflow. I have seen whether it has generated carry or not. So, with 

this carry out bit I can check whether carry has been generated or not and sign bit what is the 

sign of the result basically this most significant bit is going to give me the sign bit ok. So, I will 

just look into this particular position and see whether the number is positive or negative. So, 

since it is 1, it is a negative number and this going to represent - 2, since this bit is 0 so it is 

going to represent positive numbers so this is + 2. So, like that these are the three information 

we can collect when I am going to perform addition operation in two’s complement form and 

we require those information while implementing of computer. 

So, we have seen how to represent positive numbers how to represent integers; that means, 

positive as well as negative. Now we are going to see how we are going to represent the real 

numbers. 

109



(Refer Slide Time: 48:04) 

 

So, how we are going to represent real number it is again everything we have to deal with your 

binary number system only 0s and 1s and you should know what is the decimal equivalent of 

a real numbers if we are going to represent it in your binary number system. 

So, in that particular case just look for the particular simple example. So, this is the decimal 

point, so that is why these are the fractional point. So, how we are going to get it this number 

is your 24 + 20 and this are decimals. So, this is + 2−1 , 2−2, 2−3 and 2−4. So, this is your 4 + 

1 this is 9. So, now 1001 is 9 and 2−1 is your 0.5, this is your 2−1, what is your 2−2 this is your 

0.25 half of this, 2−3 this is half of this, so 0.125. So, this is basically 0.5 + 0.125. So, this is 

your 0.625. So, finally, my number is your 9.625. So, this is the decimal representation and 

finally, we are in this binary representation. So, everything we have to do binary representation. 

Now, main issue is now where I am going to keep this particular decimal number. So, if it is 

like that I am having a 8 bit numbers we are keeping 4 bits for before decimal and 4 bits after 

before decimal then what will happen then I can go up to 15 only it is your positive number 

and if it is your negative number then I can go from - 7 point something to - 7 point something 

and what is that point something we can simply add those particular numbers and we can get 

it. So, if I am going to have this things we will say this is a fixed point we have finding or we 

are putting the position of the decimal point as a fixed one and it will always appear at a fixed 

position. But it is very limited in computer system I am not using it, but another one is moving 

means it is according to our numbers we will adjust the particular decimal point which is 

110



basically known as floating point number fixed point representation and floating point 

representation. In case of moving it is basically floating point representation and I think if you 

are writing some problem in your C language I think you know about the floating point number. 

So, this is the floating. 

(Refer Slide Time: 50:44) 

 

Now, how we are going to do it? This is basically in floating point number we use this particular 

representation. So, most significant bit is always used to indicate the sign bit whether it is 

positive numbers or negative numbers 0 means positive 1 means negative then we are having 

some exponent part we say it is a biased exponent we will see and we are having the significant 

part. Ok that means, if I am going to represent in decimal number system say + 23 × 105 then 

what will happen, this is the exponent part and this is the significant part or the mantissa part. 

So, this is the number presentation if they having + - then decimal point sorry here decimal 

point will put it over here and into 2 power exponent. So, always decimal is having over here. 

Now, this is the way we are going to represent now in negative binary number system also 

those things will be represented in my binary number system. So, it is having exponent part 

and significant or mantissa part and along with that sign part. 

111


